Why study Boolean Algebra?

It is highly desirable to find the simplest circuit implementation with the smallest number of gates or wires.

We can use Boolean minimization process to reduce a Boolean function (expression) to its simplest form: The result is an expression with the fewest literals and thus less wires in the final gate implementation.

Boolean Algebra (continued)

- George Boole (1815-1864), a mathematician introduced a systematic treatment of logic.

- He developed a consistent set of postulates that were sufficient to define a new type of algebra: Boolean Algebra (similar to Linear Algebra)

- Many of the rules are the same as the ones in Linear Algebra.
Laws of Boolean Algebra

• There are 6 fundamental laws, or axioms, used to formulate various algebraic structures:

1. **Closure**: Boolean algebra operates over a field of numbers, \(B = \{0,1\} \):

 For every \(x, y \) in \(B \):

 - \(x + y \) is in \(B \)
 - \(x \cdot y \) is in \(B \)

 \[\begin{array}{c}
 (1,0) \rightarrow (1,0) \\
 (1,0) \rightarrow (1,0)
 \end{array} \]

 » Similar to Linear Algebra

Laws of Boolean Algebra (continued)

2. **Commutative laws**: For every \(x, y \) in \(B \),

 - \(x + y = y + x \)
 - \(x \cdot y = y \cdot x \)

 » Similar to Linear Algebra

\[\begin{array}{c}
\overset{x}{\rightarrow} F \equiv x + y \\
\overset{y}{\rightarrow} F \equiv x + y
\end{array} \]

\[\begin{array}{c}
\overset{x}{\rightarrow} F \equiv x \cdot y \\
\overset{y}{\rightarrow} F \equiv x \cdot y
\end{array} \]
Laws of Boolean Algebra (continued)

3. Associative laws: For every x, y, z in B,
- $(x + y) + z = x + (y + z) = x + y + z$
- $(xy)z = x(yz) = xyz$

 » Similar to Linear Algebra

4. Distributive laws: For every x, y, z in B,
- $x + (y.z) = (x + y)(x + z)$ [+ is distributive over .]
 » NOT Similar to Linear Algebra
- $x.(y + z) = (x.y) + (x.z)$ [. is distributive over +]
 » Similar to Linear Algebra
 Laws of Boolean Algebra (continued)

5. Identity laws:
 - A set B is said to have an identity element with respect to a binary operation $\{\cdot\}$ on B if there exists an element designated by 1 in B with the property: $1 \cdot x = x$

 Example: AND operation

 - A set B is said to have an identity element with respect to a binary operation $\{+\}$ on B if there exists an element designated by 0 in B with the property: $0 + x = x$

 Example: OR operation

 » Similar to Linear Algebra

 Laws of Boolean Algebra (continued)

6. Complement

 For each x in B, there exists an element x' in B (the complement of x) such that:
 - $x + x' = 1$
 - $x \cdot x' = 0$

 » Similar to Linear Algebra

 We can also use \bar{x} to represent complement.
Laws of Boolean Algebra (Summary)

<table>
<thead>
<tr>
<th>Commutative</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + y = y + x$</td>
<td>$x + 0 = x$</td>
</tr>
<tr>
<td>$xy = yx$</td>
<td>$x . 1 = x$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x + y) + z = x + (y + z)$</td>
</tr>
<tr>
<td>$(xy)z = x(yz)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributive</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + (yz) = (x + y)(x + z)$</td>
</tr>
<tr>
<td>$x(y + z) = (xy) + (xz)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 0 = x$</td>
</tr>
<tr>
<td>$x . 1 = x$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + \overline{x} = 1$</td>
</tr>
<tr>
<td>$x . \overline{x} = 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OR with 1</th>
<th>AND with 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 1 = 1$</td>
<td>$x . 0 = 0$</td>
</tr>
</tbody>
</table>

Other Theorems

- **Theorem 1(a):**

 $x + x = x$

 $x + x = x$

 $x + x = (x + x) . 1$

 $= (x + x)(x + x')$

 $= xx + xx'$

 $= x + 0$

 $= x$

- **Theorem 1(b):**

 $x . x = x$

 $x . x = x$

 $x . x = xx + 0$

 $= xx + xx'$

 $= x(x + x')$

 $= x . 1$

 $= x$
Other Theorems (continued)

- Theorem 2(a):
 \[x + 1 = 1 \]
 \[x + 1 = 1 \cdot (x + 1) \]
 \[= (x + x')(x + 1) \]
 \[= xx + x'.1 \]
 \[= x + x' \]
 \[= 1 \]

- Theorem 2(b):
 \[x + xy = x \]
 \[x + xy = x(1 + y) \]
 \[= x(y + 1) \]
 \[= x.1 \]
 \[= x \]

Gate Equivalency and DeMorgan’s Law

\[x' \cdot y' = (x + y)' \]

\[x' + y' = (x \cdot y)' \]
Digital Logic Q’s & A’s

Q: Why is Gate Equivalency useful?

A: It allows us to build functions using only one gate type.

Q: Why are digital circuits constructed with NAND/NOR rather than with AND/OR?

A: NAND and NOR gates are smaller, faster, and easier to fabricate with electronic components. They are the basic gates used in all IC digital logic.

Digital IC’s – Transistor Level

\[
z = x \cdot y
\]

\[
x \text{ or } y: \text{‘low’} \\
\text{transistor 1 or 2 is OFF} \\
\text{transistor 3 or 4 is ON} \\
\Rightarrow z = \text{‘high’}
\]

\[
x \text{ and } y: \text{‘high’} \\
\text{transistor 1 and 2 are ON} \\
\text{transistor 3 and 4 are OFF} \\
\Rightarrow z = \text{‘low’}
\]
Digital IC’s (continued)

\[z = a + b \]

\[z = (x+y) \cdot z \]

Implementation of Boolean Functions

Example 1: \(F_1 = x + y' \cdot z \)
Implementation of Boolean Functions

Example 2: \[F_1 = x'y'z + x'yz + xy' \]

Try another implementation using a simplified \(F_2 \):

\[F_2 = x'y'z + x'yz + xy' \]

\[= x'z(y'+y) + xy' \]

\[= x'z(1) + xy' \]

\[= x'z + xy' \]

What are the advantages of this implementation?

This implementation has fewer gates and fewer inputs to the gates (or wires) than the previous one.
Simplifying Boolean Functions

- Simplify the following Boolean function to a minimum number of terms: \(F_3 = xy + x'z + yz \)

\[
F_3 = xy + x'z + yz \\
= xy + x'z + yz(x + x') \\
= xy + x'z + xyz + x'y'z \\
= xy(1 + z) + x'z(1 + y) \\
= xy + x'z
\]

More on complements (DeMorgan)

- Find the complement of: \(F = (AB'+C)D+E \)

\[
F' = [(AB'+C)D+E]' \\
= [(AB'+C)' + D]E' \\
= [(A'+B'C') + D]E' \\
= (A'+B'C' + D)E' \\
= (A'+B)C'E' + DE'
\]

- Show that the complement of \(x(x + y) = x' \)

\[
[x(x + y)]' = x' + (x + y)' \\
= x' + x'y' \\
= x'(1 + y') \\
= x'(1) = x'
\]
Implementation of Boolean Functions

- Draw the logic diagram for the following function: $F = (a.b) + (b.c)$

\[F = \overline{a\cdot\overline{b}} + \overline{b\cdot\overline{c}} \]

Implementation of Boolean Functions

- Using ONLY NAND gates, draw a schematic for the following function: $F = (a.b) + (b.c)$

\[
(F')' = [(a.b) + (b.c)]'
= [(a\cdot\overline{b})' \cdot (b\cdot\overline{c})']
\]

\[F = \overline{a\cdot\overline{b}} + \overline{b\cdot\overline{c}} \]
Implementation of Boolean Functions

- Using only OR and NOT gates, draw a schematic for the following function: \(F = xy + x'y' + y'z \)

\[(F')' = ((xy + x'y' + y'z)'')' \]
\[= [(xy)'(x'y')'(y'z)']' \]
\[= [(x'+y')(x+y)(y+z)]' \]
\[= (x'+y')'(x+y)'(y+z)' \]

![Schematic diagram](image)

Minterms and Maxterms

- MINTERMS AND MAXTERMS:

 \(n \) binary variables can be combined to form \(2^n \) terms (AND terms), called minterms (SOP).

 In a similar fashion, \(n \) binary variables can be combined to form \(2^n \) terms (OR terms), called maxterms (POS).

 * Note that each maxterm is the complement of its corresponding minterm and vice versa.
Minterms and Maxterms (continued)

Table 2-3: Minterms and Maxterms for Three Binary Variables

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>minterms</th>
<th>Maxterms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$x'y'z'$</td>
<td>m_0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$x'y'z$</td>
<td>m_1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$x'yz'$</td>
<td>m_2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$x'yz$</td>
<td>m_3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$xy'z'$</td>
<td>m_4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>xyz'</td>
<td>m_5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>xyz</td>
<td>m_6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>xyz</td>
<td>m_7</td>
</tr>
</tbody>
</table>

Σminterms and Πmaxterms

- Given the truth table, express F_1 in sum of minterms

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>F_1</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$F_1(x, y, z) = \Sigma(1,4,5,6,7) = m_1 + m_4 + m_5 + m_6 + m_7$

$= (x'y'z) + (xy'z') + (xy'z) + (xyz') + (xyz)$

- Find F_2
\textbf{Σminterms and Πmaxterms}

- Repeat for product of maxterms.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>F_1</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[0]</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>[0]</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$F_1(x, y, z) = \prod(0,2,3) = M_0 \cdot M_2 \cdot M_3$

$= (x + y + z)(x + y' + z)(x + y' + z')$

\textbf{Σminterms and Πmaxterms}

Express the Boolean function $F = x + y' z$ in a sum of minterms, and then in a product of Maxterms.

$x = x(y + y') = xy + xy'$

$xy = xy(z + z') = xyz + xyz'$

$xy' = xy'(z + z') = xy' z + xy' z'$

$y' z = y' z(x + x') = xy' z + x' y' z$

Adding all terms and excluding recurring terms:

$F(x, y, z) = x' y' z + xy' z' + xy' z + xyz' + xyz$ \hspace{1cm} \text{(SOP)}$

$F(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \Sigma(1,4,5,6,7)$

Product of maxterms (POS)? $\prod(0,2,3) = M_0 \cdot M_2 \cdot M_3$
XOR Logic gate

3-input exclusive-OR (XOR) logic gate:

\[F = X \oplus Y \oplus Z \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>