Angular Position

1. Axis of rotation is the center of the disc.
2. Choose a fixed reference line.
3. Point P is at a fixed distance r from the origin.

Angular Position, 2

- Point P will rotate about the origin in a circle of radius r.
- Every particle on the disc undergoes circular motion about the origin, O.
- P is located at (r, θ) where r is the distance from the origin to P and θ is the measured counterclockwise from the reference line.

Angular Position, 3

- As the particle moves, the only coordinate that changes is θ.
- As the particle moves through θ, it moves through an arc length s.
- The arc length and r are related:
 - $s = \theta r$.
Radian

- This can also be expressed as
 \[\theta = \frac{s}{r} \]
- \(\theta\) is a pure number, but commonly is given the artificial unit, radian
- **One radian is the angle subtended by an arc length equal to the radius of the arc**

Conversions

- Comparing degrees and radians
 \[1 \text{ rad} = \frac{360^\circ}{2\pi} \]
- Converting from degrees to radians
 \[\theta[\text{rad}] = \frac{\pi}{180^\circ} \theta \text{ [degrees]} \]

Angular Displacement

- The **angular displacement** is defined as the angle the object rotates through during some time interval
 \[\Delta \theta = \theta_f - \theta_i \]

Average Angular Speed

- The average angular speed, \(\bar{\omega}\), of a rotating rigid object is the ratio of the angular displacement to the time interval
 \[\bar{\omega} = \frac{\theta_f - \theta_i}{t_f - t_i} = \frac{\Delta \theta}{\Delta t} \]
Average Angular Acceleration

- The average angular acceleration, α, of an object is defined as the ratio of the change in the angular speed to the time it takes for the object to undergo the change:

$$\alpha = \frac{\omega_f - \omega_i}{t_f - t_i} = \frac{\Delta \omega}{\Delta t}$$

Rotational Kinematic Equations

$$\begin{align*}
\omega_f &= \omega_i + \alpha t \\
\theta_f &= \theta_i + \omega_i t + \frac{1}{2} \alpha t^2 \\
\omega_f^2 &= \omega_i^2 + 2\alpha(\theta_f - \theta_i) \\
\theta_f &= \theta_i + \frac{1}{2}(\omega_i + \omega_f) t
\end{align*}$$

Comparison Between Rotational and Linear Equations

Table 10.1

<table>
<thead>
<tr>
<th>Kinematic Equations for Rotational and Linear Motion Under Constant Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotational Motion</td>
</tr>
<tr>
<td>Rotational Motion About Fixed Axis</td>
</tr>
<tr>
<td>$\omega_f = \omega_i + \alpha t$</td>
</tr>
<tr>
<td>$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$</td>
</tr>
<tr>
<td>$\omega_f^2 = \omega_i^2 + 2\alpha(\theta_f - \theta_i)$</td>
</tr>
<tr>
<td>$\theta_f = \theta_i + \frac{1}{2}(\omega_i + \omega_f) t$</td>
</tr>
</tbody>
</table>

Relationship Between Angular and Linear Quantities

- Displacements
 $$s = \theta r$$
- Speeds
 $$v = \omega r$$
- Accelerations
 $$a = \alpha r$$
- Every point on the rotating object has the same angular motion
- Every point on the rotating object does not have the same linear motion
Speed Comparison

- The linear velocity is always tangent to the circular path
 - called the tangential velocity
- The magnitude is defined by the tangential speed
 \[v = \frac{ds}{dt} = r \frac{d\theta}{dt} = r \omega \]

Acceleration Comparison

- The tangential acceleration is the derivative of the tangential velocity
 \[a_t = \frac{dv}{dt} = r \frac{d\omega}{dt} = r \alpha \]

Centripetal Acceleration

- An object traveling in a circle, even though it moves with a constant speed, will have an acceleration
 - Therefore, each point on a rotating rigid object will experience a centripetal acceleration
 \[a_c = \frac{v^2}{r} = \frac{(r \omega)^2}{r} = r \omega^2 \]

Rotational Motion Example

- For a compact disc player to read a CD, the angular speed must vary to keep the tangential speed constant \((v_t = \omega r) \)
- At the inner sections, the angular speed is faster than at the outer sections
Rotational Kinetic Energy

- An object rotating about some axis with an angular speed, \(\omega \), has rotational kinetic energy even though it may not have any translational kinetic energy.
- Each particle has a kinetic energy of \(K_i = \frac{1}{2} m_i v_i^2 \).
- Since the tangential velocity depends on the distance, \(r \), from the axis of rotation, we can substitute \(v_i = \omega_i r \).

Rotational Kinetic Energy, cont

- The total rotational kinetic energy of the rigid object is the sum of the energies of all its particles:
 \[
 K_s = \sum_i K_i = \sum_i \frac{1}{2} m_i r_i^2 \omega_i^2
 \]
 \[
 K_s = \frac{1}{2} \left(\sum_i m_i r_i^2 \right) \omega^2 = \frac{1}{2} I \omega^2
 \]
- Where \(I \) is called the moment of inertia.

Rotational Kinetic Energy, final

- There is an analogy between the kinetic energies associated with linear motion (\(K = \frac{1}{2} mv^2 \)) and the kinetic energy associated with rotational motion (\(K_{rot} = \frac{1}{2} I \omega^2 \)).
- Rotational kinetic energy is not a new type of energy, the form is different because it is applied to a rotating object.
- The units of rotational kinetic energy are Joules (J).

Moment of Inertia

- The definition of moment of inertia is
 \[
 I = \sum r_i^2 m_i
 \]
- The dimensions of moment of inertia are \(ML^2 \) and its SI units are \(kg \cdot m^2 \).
- We can calculate the moment of inertia of an object more easily by assuming it is divided into many small volume elements, each of mass \(\Delta m_i \).
Moments of Inertia of Various Rigid Objects

Torque

- Torque, \(\tau \), is the tendency of a force to rotate an object about some axis
 - Torque is a vector
 - \(\tau = r \sin \phi \cdot F \)
 - \(F \) is the force
 - \(\phi \) is the angle the force makes with the horizontal
 - \(r \) is the moment arm (or lever arm)

Torque, cont

- The moment arm, \(r \), is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force
 - \(d = r \sin \Phi \)

Torque, final

- The horizontal component of \(F \) (\(F \cos \phi \)) has no tendency to produce a rotation
- Torque will have direction
 - If the turning tendency of the force is counterclockwise, the torque will be positive
 - If the turning tendency is clockwise, the torque will be negative
Net Torque

- The force F_1 will tend to cause a counterclockwise rotation about O.
- The force F_2 will tend to cause a clockwise rotation about O.
- $\Sigma r = r_1 + r_2 = F_1 d_1 - F_2 d_2$

Torque and Angular Acceleration

- Consider a particle of mass m rotating in a circle of radius r under the influence of tangential force F_r.
- The tangential force provides a tangential acceleration: $F_r = ma_t$.

Torque and Angular Acceleration, Particle cont.

- Since mr^2 is the moment of inertia of the particle,
 - $\tau = I \alpha$
 - The torque is directly proportional to the angular acceleration and the constant of proportionality is the moment of inertia.

Summary of Useful Equations

<table>
<thead>
<tr>
<th>Rotational Motion About a Fixed Axis</th>
<th>Linear Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular speed $\omega = d\theta/dt$</td>
<td>Linear speed $v = ds/dt$</td>
</tr>
<tr>
<td>Angular acceleration $a = d\omega/dt$</td>
<td>Linear acceleration $a = dv/dt$</td>
</tr>
<tr>
<td>Net torque $\Sigma r = I \alpha$</td>
<td>Net force $\Sigma F = ma$</td>
</tr>
<tr>
<td>$a = \text{constant}$ $\omega^2 = \omega_1^2 + 2a(\theta_1 - \theta)$</td>
<td>$a = \text{constant}$ $v^2 = v_0^2 + 2a(s_0 - s_0)$</td>
</tr>
<tr>
<td>Work $W = \int r , d\theta$</td>
<td>Work $W = \int F_x , dx$</td>
</tr>
<tr>
<td>Rotational kinetic energy $K = \frac{1}{2} I \omega^2$</td>
<td>Kinetic energy $K = \frac{1}{2}mv^2$</td>
</tr>
<tr>
<td>Power $P = \tau \omega$</td>
<td>Power $P = F_x v$</td>
</tr>
<tr>
<td>Angular momentum $L = I \omega$</td>
<td>Linear momentum $p = mv$</td>
</tr>
<tr>
<td>Net torque $\Sigma r = dL/dt$</td>
<td>Net force $\Sigma F = dp/dt$</td>
</tr>
</tbody>
</table>
Total Kinetic Energy of a Rolling Object

- The total kinetic energy of a rolling object is the sum of the translational energy of its center of mass and the rotational kinetic energy about its center of mass
 \[K = \frac{1}{2} I_{CM} \omega^2 + \frac{1}{2} MV_{CM}^2 \]

Total Kinetic Energy, Example

- Accelerated rolling motion is possible only if friction is present between the sphere and the incline
 - The friction produces the net torque required for rotation

Total Kinetic Energy, Example cont

- Despite the friction, no loss of mechanical energy occurs because the contact point is at rest relative to the surface at any instant
- Let \(U = 0 \) at the bottom of the plane
- \(K_f + U_f = K_i + U_i \)
- \(K_i = \frac{1}{2} (I_{CM} / R^2) v_{CM}^2 + \frac{1}{2} MV_{CM}^2 \)
- \(U_i = Mgh \)
- \(U_f = K_f = 0 \)