Problem 2.2
(a) "Horizontal" components cancel. Net vertical field is: \(E_z = \frac{1}{4\pi \varepsilon_0} \frac{2qz}{(z^2 + (\frac{d}{2})^2)^{3/2}} \).

Here \(z^2 = z^2 + (\frac{d}{2})^2 \); \(\cos \theta = \frac{z}{L} \), so

\[
E = \frac{1}{4\pi \varepsilon_0} \frac{2qz}{(z^2 + (\frac{d}{2})^2)^{3/2}} \hat{z}.
\]

When \(z \gg d \) you're so far away it just looks like a single charge \(2q \); the field should reduce to \(E = \frac{1}{4\pi \varepsilon_0} \frac{2qz}{(2d)^{3/2}} \hat{z} \). And it does (just set \(d \to 0 \) in the formula).

(b) This time the "vertical" components cancel, leaving

\[
E = \frac{1}{4\pi \varepsilon_0} \frac{q d}{(z^2 + (\frac{d}{2})^2)^{3/2}} \hat{x},
\]

From far away, \((z \gg d) \), the field goes like \(E \approx \frac{1}{4\pi \varepsilon_0} \frac{q d}{z^2} \hat{z} \), which, as we shall see, is the field of a dipole. (If we set \(d \to 0 \), we get \(E = 0 \), as is appropriate; to the extent that this configuration looks like a single point charge from far away, the net charge is zero, so \(E \to 0 \).

Problem 2.3

\[
E_z = \frac{1}{4\pi \varepsilon_0} \int_0^L \frac{\lambda dx}{\left(z^2 + x^2 \right)^{3/2}} \cos \theta; \quad \left(z^2 = z^2 + x^2; \quad \cos \theta = \frac{z}{L} \right)
\]

\[
= \frac{1}{4\pi \varepsilon_0} \frac{\lambda z}{L} \left[\frac{1}{\sqrt{z^2 + L^2}} \right]_0^L = \frac{1}{4\pi \varepsilon_0} \frac{\lambda L}{\sqrt{z^2 + L^2}}
\]

\[
E_x = \frac{1}{4\pi \varepsilon_0} \lambda \int_0^L \frac{d\theta}{(z^2 + \theta^2)^{3/2}}
\]

\[
= \frac{1}{4\pi \varepsilon_0} \lambda \left[\frac{1}{\sqrt{z^2 + \theta^2}} \right]_0^L = \frac{1}{4\pi \varepsilon_0} \lambda \frac{1}{\sqrt{z^2 + L^2}}.
\]

For \(z \gg L \) you expect it to look like a point charge \(q = \lambda L \); \(E \to \frac{1}{4\pi \varepsilon_0} \frac{\lambda L}{z} \hat{z} \). It checks, for with \(z \gg L \) the \(\hat{\theta} \) term \(\to 0 \), and the \(\hat{z} \) term \(\to \frac{1}{4\pi \varepsilon_0} \frac{\lambda L}{z} \hat{z} \).

Problem 2.5

"Horizontal" components cancel, leaving: \(E = \frac{1}{4\pi \varepsilon_0} \int_0^L \frac{\lambda dx}{\left(z^2 + x^2 \right)^{3/2}} \hat{z} \).

Here, \(z^2 = r^2 + z^2 \), \(\cos \theta = \frac{z}{r} \) (both constants), while \(\int d\ell = 2\pi r \). So

\[
E = \frac{1}{4\pi \varepsilon_0} \frac{\lambda (2\pi r) z}{(r^2 + z^2)^{3/2}} \hat{z}.
\]

Problem 2.6

Break into rings of radius \(r \), and thickness \(dr \), and use Prob. 2.5 to express the field of each ring. Total charge of a ring is \(\sigma \cdot 2\pi r \cdot dr = \lambda \cdot 2\pi r \), so \(\lambda = \sigma dr \) is the "line charge" of each ring.

\[
E_{\text{ring}} = \frac{1}{4\pi \varepsilon_0} \frac{(\sigma dr) 2\pi rz}{(r^2 + z^2)^{3/2}}; \quad E_{\text{disk}} = \frac{1}{4\pi \varepsilon_0} \frac{2\pi \sigma z}{(r^2 + z^2)^{3/2}} \int_0^R \frac{r}{(r^2 + z^2)^{3/2}} dr.
\]

\[
E_{\text{disk}} = \frac{1}{4\pi \varepsilon_0} \frac{2\pi \sigma z}{(r^2 + z^2)^{3/2}} \left[\frac{1}{z} - \frac{1}{\sqrt{r^2 + z^2}} \right] \hat{z}.
\]

For \(R \gg z \) the second term \(\to 0 \), so \(E_{\text{plane}} = \frac{1}{4\pi \varepsilon_0} \frac{2\pi \sigma z}{(r^2 + z^2)^{3/2}} \hat{z} \).

For \(R \gg R, \frac{1}{\sqrt{R^2 + z^2}} = \frac{1}{z} \left(1 + \frac{R^2}{z^2} \right)^{-1/2} \approx \frac{1}{z} \left(1 - \frac{1}{2} \frac{R^2}{z^2} \right), \) so \([\approx \frac{1}{z} - \frac{1}{2} \frac{R^2}{z^2} = \frac{R^2}{2z^2}, \)

and \(E = \frac{1}{4\pi \varepsilon_0} \frac{2\pi R^2 \sigma}{2z^2} = \frac{1}{4\pi \varepsilon_0} \frac{Q}{z^2}, \) where \(Q = \pi R^2 \sigma \).
Problem 2.8

According to Prob. 2.7, all shells interior to the point (i.e. at smaller \(r \)) contribute as though their charge were concentrated at the center, while all exterior shells contribute nothing. Therefore:

\[
E(r) = \frac{1}{4\pi \varepsilon_0} \frac{Q_{\text{int}}}{r^2} \hat{r},
\]

where \(Q_{\text{int}} \) is the total charge interior to the point. Outside the sphere, all the charge is interior, so

\[
E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \hat{r}.
\]

Inside the sphere, only that fraction of the total which is interior to the point counts:

\[
Q_{\text{int}} = \frac{4}{3} \pi r^3 Q = \frac{r^3}{R^3} Q, \quad \text{so} \quad E = \frac{1}{4\pi \varepsilon_0} \frac{r^3}{R^3} Q \frac{1}{r^2} \hat{r} = \frac{1}{4\pi \varepsilon_0} \frac{Q}{R^3} \hat{r}.
\]

Problem 2.9

(a) \(\rho = \varepsilon_0 \nabla \cdot E = \varepsilon_0 \frac{1}{\varepsilon_0} k \frac{d}{dr} \left(r^2 \cdot kr^2 \right) = \varepsilon_0 \frac{1}{\varepsilon_0} k (5r^4) = 5\varepsilon_0 kr^2 \).

Problem 2.10

Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface of this larger cube gets the same flux as every other one, so:

\[
\int_{\text{one face}} E \cdot da = \frac{1}{24} \int_{\text{whole large cube}} E \cdot da.
\]

The latter is \(\frac{1}{\varepsilon_0} q \), by Gauss's law. Therefore

\[
\int_{\text{one face}} E \cdot da = \frac{q}{24\varepsilon_0}.
\]