Memory and Programmable Logic

Memory Device:
Device to which binary information is transferred for storage, and from which information is available for processing as needed.

Memory Unit:
is a collection of cells capable of storing a large quantity of binary information.

In digital systems, there are two types of memories:

1. RAM
2. ROM

Memory and Programmable Logic

1. Random-Access Memory (RAM):
The process of transferring new information into memory is the memory write operation.

The process of transferring information out of memory is the memory read operation.

2. Read-Only Memory (ROM): is an example of programmable logic device (PLD). Other examples are: programmable logic array (PLA), programmable array logic (PAL), and field-programmable logic gate array (FPGA). (PAL: Program. AND, fixed OR, PLA: Program. AND/OR)

- A PLA is an integrated circuit with internal logic gates that are connected through electronic paths, which behave similar to fuses. Programming the device involves blowing those fuses along the paths that must be removed to obtain a desired function.
Memory unit \(\rightarrow \) stores binary information in groups of bits called \textit{words}.

Memory word \(\rightarrow \) group of 1’s and 0’s and may represent a number, character(s), instruction, or other binary-coded information.

Most computer memories use words that are multiples of 8 bits (\textit{byte}). 32-bit word \(\rightarrow \) 4 bytes

![Block Diagram of a Memory Unit](image)

Random-Access Memory

Each word in memory is assigned an address 0 up to \(2^k - 1 \) (\(k = \# \text{ of address lines} \)).

<table>
<thead>
<tr>
<th>Binary</th>
<th>decimal</th>
<th>Memory content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000000</td>
<td>0</td>
<td>10010110111001</td>
</tr>
<tr>
<td>0000000001</td>
<td>1</td>
<td>000011010100011</td>
</tr>
<tr>
<td>0000000010</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1111111101</td>
<td>1021</td>
<td>100111100010100</td>
</tr>
<tr>
<td>1111111110</td>
<td>1022</td>
<td>000011010001111</td>
</tr>
<tr>
<td>1111111111</td>
<td>1023</td>
<td>110111100010001</td>
</tr>
</tbody>
</table>

![Content of a 1024 × 16 Memory](image)

How many bytes is this memory module?
RAM: Write and Read Operations

To transfer a new word to be stored into memory:

1. Apply the binary address of the word to address lines.
2. Apply the data bits that must be stored in memory to the data input lines.
3. Activate the write input.

To transfer a stored word out of memory:

1. Apply the binary address of the word to address lines.
2. Activate the read input.

Write and Read Operations in RAM

Write operation:
The memory enable switches to the high level and the Read/Write to the low level. The two control signals must be active for at least 50 ns.

Read operation:
The memory enable switches to the high level and the Read/Write to the high level. The memory places the data of the word selected by the address in to the output data lines $\leq 50\,\text{ns}$ from the time the memory enable is activated.
Memory Types

Integrated circuit RAM units are available in two possible operating modes: static and dynamic.

Static RAM (SRAM) consists of internal latches that store the binary information. The stored information remains valid as long as power is applied to the unit.

Dynamic RAM (DRAM) stores the binary information in the form of electric charges on capacitors provided by the MOS transistors. The charge on the capacitors tends to decay with time and the capacitors must be periodically recharged by refreshing of the dynamic memory every few milliseconds.

- DRAM offers reduced power consumption, large integration of units on chip.
- SRAM is easier to use and has shorter read and write cycles. SRAM is used for cache.

Memory Hierarchy
Volatile vs. Non-Volatile Memory

- RAM (static and dynamic) is said to be volatile, since information is lost when power is turned off.
- Non-volatile memory retains its information even when power is turned off.

1. Magnetic disks: stored data is represented by the direction of magnetization.
2. CD: compact disc is a piece of polycarbonate (a type of plastic) on which a spiral track has been impressed. This spiral track is a series of indentations ("pits") separated by flat areas ("land").
3. ROM: The internal storage elements are set to their values once and after that are only read.

EPROMS and PROMS

Erasable Programmable Read-Only Memory (EPROM) is a special type of memory that retains its contents until it is exposed to ultraviolet light.

To write to EPROM, you need a special device called a *PROM Programmer* or *PROM burner*. An EPROM differs from a PROM in that a PROM can be written to only once and cannot be erased.

EPROMs are widely used in personal computers since they enable the manufacturer to change the contents of the PROM before the computer is actually shipped. This means that bugs can be removed and new versions installed shortly before delivery.
EEPROMS and FLASH

Electrically Erasable Programmable Read-Only Memory (EEPROM), is like EPROM except that the previously programmed connections can be erased with an electrical signal.

Flash memory is a type of EEPROM. Information stored in flash memory is usually written in blocks rather than a byte or word at a time.

Virtual Memory?
With virtual memory, the computer can look for areas of RAM that have not been used recently and copy them onto the hard disk. This frees up space in RAM to load the new application. Because it does this automatically, you don't even know it is happening, and it makes your computer feel like it has unlimited RAM space even though it has only 256 megabytes installed.

RAM Memory Cell

The storage part of the cell is modeled by an *SR* latch with associated gates.

A 1 in the read/write input provides the read operation by forming a path from the latch to the output.
A 0 in the read/write input provides the write operation by forming a path from the input to latch.
WRITE operation: the data available in the input lines are transferred into the four binary cells of the selected word. The memory cells that are not selected are disabled.

READ Operation: the four bits of the selected word go through OR gates to the output terminals.

Commercial RAM

Commercial RAM → thousands of words, with each word 1 - 64 bits. A memory with 2^k words of n bits/word requires k address lines that go into a $k \times 2^k$ decoder.
The idea of two-dimensional decoding is to arrange the memory cells in an array that is as close as possible to square. Use two $k/2$-input decoders instead of one k-input decoder. One decoder performs the row selection and the other the column selection in a two dimensional matrix configuration.

Q: How many words can be selected?

Read-Only Memory (ROM)

Read-only memory is a memory device in which permanent binary information is stored.

- The number of words in a ROM is determined from the k address input lines needed to specify the 2^k words.

- **Why doesn’t the ROM have any data inputs?**
Read-Only Memory (ROM)

A 32 x 8 ROM consists of 32 words of 8 bits each. The five input lines are decoded into 32 distinct outputs (memory addresses) using a $2^5 \times 8$ decoder. Each OR gate has 32 input connections → 32 x 8 ROM has internal connections 32 x 8. In general, a $2^k \times n$ ROM will have $k \times 2^k$ decoder and n OR gates with $2^k \times n$ internal connections.

![Decompression-internal connections](image)

Fig. 7-10 Internal Logic of a 32 x 8 ROM

Read-Only Memory

A programmable connection (a crosspoint) between two lines is logically equivalent to a switch that can be be closed (two lines are connected) or open (two lines are disconnected). A switch can be a fuse that normally connects the two points, but can be opened by blowing the fuse using a high voltage pulse.

![256 programmable intersections](image)

Fig. 7-10 Internal Logic of a 32 x 8 ROM
Programming Read-Only Memory

Output A_6 can be expressed in sum of minterms
as: $A_6(I_4, I_3, I_2, I_1, I_0) = \Sigma(2, ..., 29, 30)$

Constructing 256K X 8 RAM (similar to 7-8)

1. How many 64K x 8 RAM chips are needed to provide a memory capacity of 256K bytes?
2. How many lines of the address must be used to access 256K bytes? How many of these lines are connected to the address inputs of all chips?
3. How many lines must be decoded for the chip select inputs of all chips?
64K X 8 RAM chip

Capacity: 64K words of 8 bits each

How many chips are needed to construct 256K x 8? What is the size of the decoder?

256K X 8 RAM

- Three-state outputs are connected together to form 8 data output lines.

- Just one chip select (CS) will be active at any time.

- RAM requires 18-bit address: 16 LSB address are applied to the inputs of each RAM. 2 MSB are applied to 2-to-4 decoder.

- Address bits 16 and 17 are used for chip selection.
32 X 8 ROM chip

128 X 8 ROM chip (similar to 7-15)
Programmable Logic Device (PLD)

Programmable logic devices (PLD) are designed with configurable logic and flip-flops linked together with programmable interconnect.

PLDs provide specific functions, including
- Device-to-device interfacing
- Data communication
- Signal processing
- Data display
- Timing and control operations, and almost every other function a system must perform

PLDs (continued)

(a) Programmable read-only memory (PROM)
Programmable Logic ARRAY (PLA)

crosspoint ‘connected’

crosspoint ‘disconnected’ blown fuse.

PLA Programming Table

<table>
<thead>
<tr>
<th>product term</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB'</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$A'BC'$</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7.14 PLA with 3 Inputs, 4 Product Terms, and 2 Outputs
PLA Programming example

Implement the following function with a PLA:

\[F_1 = \Sigma(0,1,2,4) \]
\[F_2 = \Sigma(0,5,6,7) \]

Programmable Array Logic (PAL)

The programmable array logic (PAL) is a logic device with fixed OR array and a programmable AND array. It is easier to program but not as flexible as PLA.

Boolean functions must be simplified to fit into each section → product term cannot be shared among two or more gates.

Fig. 7.16 PAL with Four Inputs, Four Outputs, and Three-Wide AND-OR Structure
Sequential Programmable Logic Devices

Simple or Sequential Programmable Logic Device (SPLD): Includes flip-flops and AND-OR array within the IC chip.

Sequential Programmable Logic

A microcell is a section of a SPLD that contains a sum-of-product combinational logic and a flip-flop. A commercial SPLD contains 8 - 10 microcells in an IC package.
Complex Programmable Logic Device (CPLD)

Complex Programmable Logic Device (CPLD): The design of a complete digital system using PLD requires the use of several PLD’s in a Complex Programmable Logic Device (CPLD) integrated on a single chip.

![Fig 7-20 General CPLD Configuration](image)

Field-Programmable Gate Array (FPGA)

Field-Programmable Gate Array (FPGA): is a VLSI circuit whose function is defined by a user's program rather than by the manufacturer of the device (CPEN431)

- Depending on the particular device, the program is either 'burned' in permanently or semi-permanently as part of a board assembly process, or is loaded from an external memory each time the device is powered up.

- The Field-Programmable Gate Arrays provide the benefits of custom CMOS VLSI, while avoiding the initial cost and time delay.