Sound
- Synthesized
- MIDI

Synthesis
- Nyquist Theorem: any sound can be created from component sinusoids
- Frequency Modulation (FM)
- Wave Table

FM
- modulate a carrier signal
- = add another signal to a base (carrier)
- many ways to do this (Fig. 6.7)
- ex:
 - if $t =$ time, $\cos(2\pi t)$ sounds half the pitch of $\cos(4\pi t)$
An Example

- $A(t)\cos(\omega_c t + I(t)\cos(\omega_m t + \varphi_m) + \varphi_c)$
- $A(t)$ controls amplitude of synthesized signal
- $I(t)$ controls amplitude of modulation signal
- ω_c, ω_m are carrier and modulating freq.
- φ_m, φ_c (phase) delays for each signal

Problem

- Quality of sounds is like tofu (don’t try to make it sound like something else - it won’t exactly sound like it)

Wave Table

- Collect samples of an instrument
- Algorithmically modify pitch, duration, etc.
- Advantage: more realistic sound
- Disadvantage: memory required

Demo Garage Band

- Synthesis demo
- Show loop basics, demonstrate piano
- Show loop editor, demonstrate change pitch
- GarageBand capabilities, relate to iMovie
MIDI

- Musical Instrument Digital Interface
- Language for describing note sequences; very similar to network protocols
- Note has a pitch, duration, volume
- Commands include note on, note off, select instrument (channel)

TERMINOLOGY

- Synthesizer: sound generator
- Sequencer: edit sequences of commands/notes
- Controller: outputs MIDI messages rather than sounds